
7 AAOB 81319 STANFORD UNIV CALIF SYSTEMS OPTIMIZATION
LAB ' 12,g

LVSOLVING STAIRCASE LINEAR PROGRAMS By THE SIMPLEX METHOD. 2. PRI--KYCLJ)

OLNOV 79 R FOURER NOOO4-75-C-02AT

UNCLASSIFIED S0L79-9 NL

EE mhEEEEmhEI

Systems
Optimization

Laboratory

Eli
>21

C L

C.

for ftil ~~~ saPe: j

Department of Operations Research
Stanford University
Stanford, CA 94305

80 2 14 0122

SYSTEMS OPTIMIZATION LABORATORY gDEPARTMENT OF OPERATIONS RESEARCH

Stanford University
Stanford, California94305

DDC

14 18

SOLVING STAIRCASE LINEAR PROGRAMS
BY THE SIMPLEX METHOD, 2: PRICING E

by

Robert Fourer

TECHNICAL REPORT SOL 79-19
November 1979

Research and reproduction of this report were partially supported
by the Department of Energy Contract DE-ASO3-76-SFO0326 PA#
DE-AT-O3-76ER72018; the Office of Naval Research Contract
N00014-75-C-0267; the National Science Foundation Grants
MCS76-20019 AO1 and ENG77-06761.

Reproduction in whole or in part is permitted for any purposes of
the United States Government. This document has been approved
for public release and sale; its distribution is unlimited.

i i =-A

INTRODUCTION

The goals of this paper are those of its predecessor [21: to

solve staircase-structured linear programs faster through adaptation of

the algorithms of the modern simplex method. The means are quite different,

however. Whereas [2] concentrated on "inversion" algorithms that factorize

the basis and solve linear systems, the present papzr looks at "pricing"

algorithms that find a variable to enter the basis at each iteration.

Pricing involves two sorts of activities: computation of reduced

costs that determine which variables are eligible to enter the basis, and

selection of an entering variable from among those eligible. Thus an

implementation of pricing in the simplex method requires both computation

and selection algorithms. Either sort of algorithm may be adapted to

staircase structure.

This paper begins with a short general review of staircase linear

programs. Sections 2 and 3 then look at the computation algorithms, after

which Sections 4 and 5 deal with selection algorithms. Staircase adapta-

tions of both kinds of algorithms are proposed and evaluated.

Section 6 reports extensive computational experience with the pre-

ceding proposals. The staircase computation algorithms for pricing are

found to offer modest but consistent savings. Staircase selection

algorithms, properly chosen, produce more spectacular results: the numrber

of iterations, time per iteration, or both may be reduced substantially

by comparison with standard methods.

Overall the prospects for staircase adaptation of the simplex

method appear highly promising. When the methods of this paper are com-

bined with those of [2] in the most efficient way, one may expect savings

of 50% or more for many different kinds of staircase linear programs.

7 -7

1. STAIRCASE LINEAR PROGRAMS

This section summarizes the treatment of staircase structures

developed in [1,21, with special attention to properties important in

pricing.

Formulation

Staircase linear programs (LPs), as defined in 121, share two

simple characteristics: their variables fall into some sequence of dis-

joint groups; and their constraints relate only variables within adjacent

groups. Usually the sequence of groups corresponds to a sequence of

times, so that variables in a group are said to represent activities of

one period. Constraints thus indicate how activities in one period are

related to activities in the next.

A constraint is said to be in period % if it contains variables of

period t. but not of later periods. Typically some constraints involve

only variables of period 2., while others relate variables of periods t.

and 1-1; the latter are linkingt constraints, wbereas the former are non-

linking. Analogously, linking variables appear in constraints of periods Z.

and 1+1, while non-linking variables appear only in constraints of

period 1.

A more general approach defines a staircase LP to be of order r

if its constraints relate variables that are at most r periods apart.

Many of the ideas of this paper are applicable to staircase LPs of any

order. However, the emphasis is on first-order staircases as defined above:

these have the simplest and strongest structure, and so are best suited

to special techniques.

2

47

Staircase matrices

Following [2], the matrixof constraint coefficients of a staircase

linear program is a staircase matrix. Its nonzero elements are confined

to certain submatrices centered roughly on and just off the diagonal--as,

for example,

A2 2 eel,/

A3 2 A3 3 /'

A .7 .N
A4 3 A4 4 -. : ', .

L..----------A 5 4 A5 5 c

"' , , /

Formally, one partitions the rows of an m x n matrix A into t disjoint "-.,

subsets, and the columns into t disjoint subsets, so that A is
2

partitioned into t submatrices, or "blocks":

Aij i - l,...,t; j -

A is lower staircase (as above) if Aij - 0 except for i - j and

i = J+l. A is upper staircase if Aij - 0 except for i = j and

i - j-1.

By analogy with staircase LPs, rows in the ith partition of a

staircase matrix A are called period-i rows, and columns in the jth

partition are called period-J columns. If a period-i row has nonzero

elements in blocks Ai,i_1 and Aii, it is a linking row; if it has

nonzeroes only in A l it is a non-linking row. Similarly, a period-j

3

colum that has nonzeroes in A and A is a linking column.

whereas one that has nonzeroes in A only is a non-linking column.

It may be assumed, without loss of generality, that all stair-

case LPs have a constraint matrix A in standard form: A is lower stair-

case, and the diagonal blocks A have no all-zero rows or columns.

If A is permuted to put the linking rows of each period first, and

the linking columns of each period last, then it also has the follow-

ing reduced form:

! A~22

I -

I3 A 2 A3! A~33

AI 3 A4 4

L

The intersection of period-k linking rows and period-(k-l) linking columns

is the reduced block Ak~k-l.

If the linking rows of every period i are switched to period i-I

then A gains an alternative row-upper-staircase form:

4

switd~i xx ti I initila co I tmnua -t pertod j o' perIod J+ IA ~va di I to'remt

~'Iuii-i~'~r-i I t ~a~for". Thuas A as IAtrc~Aso A in tvduiced sa iard

fo'rm ombos tes thir s At'oes 1 ve ri'w-uplr, Aind -ol%1vm1u11prer--

~~~~to (11-0 M ieed t evr't iio'- of wa ' .here t he port od~s begill Ald

Any bAi tl k~t a StAitl',Aasi 1 tW1al rxiOgAm 110?PAAri lv tntivi t

A ~I t ~'~5' I 'u' fromI ~~ t he comastrA tit nimt r l A: , B' blocks,~'hi

1t 110d t vmW1 be I aki is t he asiW-bl ckas ot A, ( mW A

Oit I to wi tho bmastc v, I' timmit . I A hAis A t'edtiod for". 11 MtnAY

I kowto ht, tAko% As t, basl~tei part m (

Et ther N 0~ rW 1A mAv be Piri Alqotig some I WIkitig3 row i it

itI h~ippWnas thAt .i W Al 00th lulmflP-t' Alon ro t i~ I A-

Wi ast AtdArd ori rvdu~'d fom o~vn it A as.

Hotu~phorth Atitvu a \~ a s 'A ill he Aissmod t-,, IIA\t tile MtAir-

'Aaso (t''m Inher Ited fro~m A. The numbor of rowas o't Bit n vert od i will

bip Joltti sit And tho misbor of % '.Nlmnis of 1% inl potod w till b



denoted n ; the respective numbers of linking rows and columns will be

mi and n . For the row-upper-staircase form, the number of rows in

period i will be m , and for the column-upper-staircase form the number

of columns in period j will be n. Necessarily mi - m - nj- -

and mi _< m., nj < n .

Balance constraints and square sub-staircases

Since the basis B is nonsingular, it must obey the "balance

constraints" developed in [1]. In summary, these restrict the excess of

rows over columns in each period, individually and cumulatively, as follows:

0< (ni-mi) < i~ ̂  n^-

-min( 'f-l) 1 k (n-mi) < min( + i g) , k,R- 1,..., t-1

-min(^ ^ < it (ni-mi) < 0 k - 2,..- 'n~k k-l) -- k i- -

In words, the cumulative imbalance between rows and columns in periods k

through X is bounded by the smaller dimension of 6k,k-I and the smaller

dimension of B +I, . Hence these constraints are quite strict when

there are relatively few linking rows or columns.

The first constraint above may also be written as the following

three inequalities:

mi

6



These say that the first I periods of the lower staircase cannot have

more rows than columns, while the first I. periods of the associated row-

upper or column-upper staircase cannot have more columns than rows.

All three of these relations are equalities when t. - t, since

B is square. It can also happen that equality is achieved for some

9<t. For example, if n,, 4~ B must look something like this:

------------------------ 1 i 1

The rows and columnsof periods 1 through 9. form a square sub-staircase,

as do the rows and columns of periods 1+1 through t; they are linked

only by nonzero elements in the off-diagonal block i 1+,. In a similar

way an equality 4I~ mi implies a pair of square sub-staircases

within the row-upper staircase form, and n ni =4mi implies the

same for the column-upper form.

Generally B may exhibit any or all of these three kinds of

equalities, and each may hold for several values of I. < t. If p differ-

ent such equalities hold, then B breaks into p+l disjoint square

sub-staircases. Square sub-staircases can have a strong effect upon the

iteration path of the simplex method, as Section 4 will show.

7



2. PRICING IN THE SIMPLEX METHOD

Each iteration of the simplex method begins with the choice of a

nonbasic variable to enter the basis. The operations involved in making

this choice are collectively referred to as pricing. Timings of staircase

L.Ps in [2] show that pricing is invariably an expensive part of the

simplex method, typically one-third to two-thirds of the total cost.

This section surveys current techniques of pricing, to set the

stage for discussion of staircase pricing in the sequel.

To keep things simple it will be assumed that the problem is to

maximize c Tx, that x is subject only to explicit constraints Ax -b

and implicit nonnegativity (x > 0), and that a feasible basis is at hand.

Straightforward extensions permit implementation of the composite simplex

method [16,201 for infeasible bases, and of implicit upper and lower bounds

of all sorts.

The constraint matrix A will be taken to include the objective

as row 0; aji will be the jth column of A. B will represent a basis,

and B the succeeding basis; a tilde will also indicate other quantities

that have changed with the basis. A unit column with a 1 in row j will

be written e J

Choosing a variable to enter the basis

Central to all pricing techniques are the reduced costs,d,

j -1,-., n. If the jth variable is nonbasic, d i > 0 implies that the

objective will increase when j is brought into the basis (at a positive

value), while d < 0 implies that the objective will decrease when j

j8



enters the basis. Thus the simplex method can be guaranteed to find a

maximum provided that, at each iteration, a variable j having d1 > 0

is chosen to enter the basis.

At most iterations there are many "eligible" nonbasic variables

whose reduced costs are positive. Any pricing technique, therefore, must

incorporate some criterion for choosing among the eligible nonbasics.

Early experiments [12,211 showed that the number of iterations

in the simplex method Is highly sensitive to the pricing criterion.

Although it suffices to choose an eligible nonbasic at random, consider-

ably fewer iterations are required when the chosen variable q has a

maximum reduced cost:

d - maxj d (1)

This criterion produces the greatest improvement in the objective per

unit change in the activity of the nonbasic variable. Not surprisingly,

the nuti-ber of iterations is further reduced when q is chosen to maximize

total improvement in the objective at the current iteration.

Still better criteria have been developed by extending (1) in a

different sense. Criterion (1) can be looked at as follows 15]: it

chooses to move along an edge of the feasible region whose gradient is

steepest in the subspace of the nonbasic variables. A superior criterion

chooses instead a steepest edge in the space of all variables. Writing

ai (a aj I for the change in the ith basic variable per unit change

in nonbasic variable J, suc. a "steepest-edge" criterion chooses q so

that

9



dq/,/I + , -iq- - maxj Fd/+% -a 2)

In computational tests [5,b,12,211 this criterion and its variants have

consistently yielded the fewest iterations.

Computational considerations

The efficacy of a pricing criterion must be balanced against the

computational effort required. Generalyly a "better" criterion cuts the

number of iterations but requires more computation per iteration, so that

it may or may not be less expensive overall. For example, to implement

the greatest-total-improvement criterion one must first determine

A min[x /a ij]

for every nonbasic j such that dj > 0; then the incoming variable q

must satisfy

Aq dq max Adj

These tests require a prohibitive amount of computation for all but the

smallest LPs.

Of all criteria that employ reduced costs, the gre test-reducod-

cost criterion (1) is certainly the simplest to Implement: it requires

only the di's. Moreover, d can be computed efficiently in any of

three ways:

10



(a) Solve BTn = e0  for a vector of prices, n. Then compute
T

d 7 aj.

(b) Update n from the previous iteration: if nonbasic variable

q replaced the pth basic variable, with pivot element a,

T
first solve B v = e for v, then compute % = i - (d q/a)v.p q

Find dj i a as before.

(c) Update d from the previous iteration: solve for v as in
jT

(b), then compute d d (dq/a)v aJ,

On average (c) requires the least computational effort and (a) the most,

as explained in detailin [4,181. However, (a) may afford considerable

savings if not all d 's are computed at each iteration (as in "partial

pricing" discussed below); in addition, with (a) not all of n need be

computed for staircase problems (as explained in Section 3). Method (b)

also allows partial pricingbut must compute all of 7r; partial pricing is

impractical with (c), which must find every dj at each iteration. For

staircase problems a hybrid of (a) and (b) may be desirable, as Section 3

shows.

Steepest-edge criteria (2) replace d by a more complicated

function,

1-2
d i 'V + a alj

Two practical implementations compute or approximate this function as

follows:
-2

(d) Goldfarb [51 stores an additional set of weights, yj = 1 + a 2 j,

which are updated at each iteration. The incoming column may

then be chosen to maximize the square of the above function,

d 2/y, over all nonbasic j such that d > 0.

iiij



(e) Harris [6] takes a similar approach, but employs weights

T l + a that are updated at most iterations and are

reset to I when they become too inaccurate. The incoming

variable is chosen to maximize d /T
iiJ

The advantage of (e) is that it requires only slightly more computation

than (a)-(c), whereas (d) must solve an extra linear system with BT  and

must compute extra inner products. On the other hand, (d)'s more accurate

criterion tends to find an optimum in fewer iterations. Both (d) and (e)

must update all weights at each iteration by solving BTv = e p, computing

vT a for nonbasic J, and additional steps; the dj's are thus cheaply

updated at the same time by method (c). However, any efficiencies of

method (a) or (b) through partial pricing are lost.

Partial pricing

All of the above methods involve an inner product to compute each

d: either Taj for (a)-(b), or vT a for (c)-(e). Vector aj is

usually very sparse, so that only its nonzero elements and their row

indices need be stored. Hence any one of these inner products can be

computed cheaply. Nevertheless, the total cost of these products for all

d 's may be substantial, especially if the LP has considerably more vari-

ables than constraints.

Partial pricing attempts to speed up method (a) or (b) by consider-

ing only some of the nonbasic variables as candidates to enter the basis

at each iteration. Only di's for these candidate nonbasics are needed,

12



and hoan'. fewer innor produc'ts are 'oomputod. It tho~ mot1 tit v'4tdid41i'N

ito kept smmall., the cosat o'f an i torati Iut 4n he m4rkodl v rodicod. IHwr'va't,

tho number tit i torat ionstiends tot bo grtator %%ndor pertnt pv te ttig sainl'

suporlo~r po'tentia ca ~ndidatest Are oft' tn loft tit tit the. caltdid~te met

Partial1 pr ivin Is~ t41hus talsonti1411 A 4 nltte ti' trA'dig morgaa,r

itoral hotu' for loss~ work por itirnt on. A good p4 r It 14- it vI it g .. %'n4'

e'hoosesu tand idate sets t hat tttdko i tmis trttoott t tnvorAbi e oti.. h

suimplestl ua'heane pa:'t11 oll tilt vaiables tt%, 4 fitxed %-t le&'t itl Of

c'and idat so.ts t4Ihat are pritced tit rot at bi; more sopitt4t 1ed sk-home..

do leamint tet,' cntdidAt, sets am dytamit'.tl v, 4 soptna wholl a "good elltigh'"

iottled Cost has been found . Dyllit. 1141-r 1141 pt i c' tg tlnat bie V tewvd

matIheatia 4lly as 4 ctiaap ic ted opt lan -smt0Ip'tng p1*01l 1 atit wich 1tlth

d istritbutiton kit tilt redlve'd ctsta 14 twakuniwn tin grAditainliv chatugtitg.

Some At tompt hasm been made to aolvo t its problem amystmI aalic'lIV III; t ot

t he mist partI, 1Owever. *Part fl 141-t'oig at'h.mem hatve vtttploved hottvi tst t%-.

chomeat l'ek.'aua Ihe buy NOid reasamtib IcAnd worked aetaIc

'110 uumba I o Imtp I 6men 1 tt ot I, te im 11, I' At ta11 v Pt' In lg (-

1000u1144. -probabiv lit two' lttgu' meat.vle N%1 i pl In V;dtcIV tlt, SeuAW'

WAV. I to r. r: A' IrAllV ctumun wI it tti IV x.am I I% e ave ti k cv"% itt sopp I tt

111 1111t tt IV W It 11 t 00e 14111 11 A a Vit'Odt CO-Amt *And 1 0 St 01 It Omp IV1~ olitte

bigt to~tt..d k*oat 1* 1 Otafid . w4toren tit What Ill1tooammal I i whadt I s

bill av be .11 hri AbsouI tat,0 rt 41tvfp abamot tets kam imPA1t Vediltved

ooisls with thipshol'd v~1twy4 ttAt are no1 fit tat1 tvIron: experletee or v h

.1be 1:,. -4 1s .- i I Kot': Ito um 1. * 1 a-it kisit u a t ed t %IIhe Mst~ It tide 0 1 1athwed C,' t S

do., 1 In.. r Vtat IVV ctryam mAko etmparls oa tint VAamong redlnted toa CN tOIJoit

at the vtorrent Iterat iona.



I'Art JI llP It,' Itg Im. o'p* i al IV At I~ Act Ive V i llil (lit, kci' tt

PIV 1t A t j 'ti tl lit~t I pd k'ut * .ittd AO . t l%.Ia t .1Wt I c t I dd li

Rme imA mlit At V I ' % It A 0J ';tuAI I t -As Ict i oa'ta I aI ow t"m ,11 IV%'i At fo'lt a *tIU 1 Iit

vaut I Ah I'. Iha', r d st11 I i iit oit ,~'a Alt A '411 4t It At' (I 1ii 4%, 1 t t I.% q

CON IS 'tMic'ta S u' MAllk ill ~ "1031tvi di AI t'd I't"m illl 11th I h i ivvu

0111 111s pA k Ait Iti'. At qdv Ap t A i t Iitd I'~Il'in Mota ki t lmv t 'la t I i-tiig

vmv i'it to tip i' i Ast Au tipAr'tialcluikA ttI l01114tat 'cIq ltr' i t vt V1 Ad tIll

a'40t-1ti'ttt a tilit plAp t IOWu., IalAvt i i t' ~ tri t1 p t~A t Nvi'ti' I lt, AI\Vl

o tui' p a ch-vi'm,' ola' tI \ A ~ Im O'd * t~tav r * t i' ~dt Iv we~ki loit I m1V p I I'

cor tiritt . 1 igi'ua *t Il ititv Ii' ii A NI I ig linsa Iii'ti dot 'lilot itti n i' U II mW'u t

p'i6th y hI'o iit i f I ,$-iti'wiwi't * Autil ati tl t ar'A kut pt pwl'i lsa ha .I p i'd ig

ItIn n pon'i' t e Oll po" olai lI la Nl~vd m 1i1I'd

ft o ~o~ilikAl101 I~r om tsorollemmo tov 1 01 0 t''lp" 14V



3. COMPUTING PRICES FOR STAIRCASE LPB

Consider now a linear program of staircase structure. Suppose

that the reduced cost of nonbasic column j is to be computed by

d 7 T aj in method (a) or (b) of the previous section. if aj is from

period I then it has nonzero elements only on rows of periods k and k+l;

T
as a consequence, the inner product wT aj requires only elements of nl

that correspond to period-Z and period-(t+l) rows.

More generally, if a is a column from period k or later, then

its reduced cost can be calculated from only those elements of 7 that

correspond to rows of period Z or later. This statement is true for

higher-order staircases as well as first-order ones.

These facts would be of no practical importance if all d 'a were

calculated at every iteration. However, under partial pricing most

candidate sets will contain variables of only certain periods, and so at

most iterations only part of wt will really be needed. The cost of

pricing might therefore be reduced if only the needed part of 7t were

computed.

Selective computation of the price vector

In practice there is no efficient way to compute arbitrary elements

of nt independently of the other elements. Nevertheless, useful portions

of wt can be computed more cheaply than all of wt, provided that the

basis is arranged in an appropriate way.

Consider first method (a) of the preceding section, which finds vt

as the solution of B Tit a e 0' Current LP codes solve this system by a

15



form of Gaussian elimination, as explained in detail in 121. After a

sertes of various computations (whose speciftics are not important here)

the elements of w are finally produced by a routine cal led 1FRANI..

Essentialiv BTRANI, comprises a single main loop;each pass tlrough this

loop computes a new elenment of it from the prevoualy-computed elements.

Thus a portion of u can be computed by simply stopping BTRANI, prematurely.

If later more of n is needed, BTRANI. can be restarted where it' tet off.

Unfortunately w1RAN1. cannot product the elements of vi in any

desired order; instead it must compute n in a fixed order that

corresponds to the ordering of B's rows for Gauss ian elimination.

Standard methods of elimination choose a row orderinlg for ctft iien'y and

numerical stability, without regard to the periods of the stairase.

As a result BTRANI, Lends to produce i, lements ot u from various periods

indiscriminately, and it may be necessary to run most of BTRANL to compute

all elements of it for even one period.

To compute portions of vt usefullv, the reforet, B's orderitng for

Gaussian elimination must preserve the staircase structure. Tvoi such

orderings are described in 1i,21: both leave thte rows of the basis in

or nearly in period order. BTRANI, then produces the elements ot it

in nearly reverse period order: t. t-l. ... , 2, 1.

With these staircase ordertngs it Is practical to selectivelv

compute it. If the partial-pricing scheme starts with ctiluvits frow

period (, then BTRANL is called to compute n for periods t t-l,.. . (+1,

only. Thin portion of it will suffice so long As all candidates are

in period t or later. If some candidate falls in an earlier period,

say k, then BTRANI. Is resumed where it left oft to compute " for periods

17!



t-1, ... , k+l, k. BTRANL may be restarted in this way several times

if the candidate set includes successively earlier periods.

The savings in computing only part of n can be significant:

BTRANL is inherently a relatively expensive routine and accounts for

most of the cost of solving B T - eO . A set of six test problems in

[2J spent roughly 15-20Z of their total time in BTRANI., or 20-25% of

their time if only iterating routines were considered.

Actual savings necessarily depend on the chosen pricing scheme.

If the candidate set usually contains variables from early periods then

little will be gained; preferably the candidate set is confined to later

periods at a good proportion of iterations. For best results one may

use special staircase partial-pricing methods, which are the topic of

Section 5.

Selective updating of the price vector

It can be faster to update w--by method (b) of Section 2--than

T
to recompute Tr from B it - eO . However, a full update requires a t tll

solution to n system like B V ek, and it will usually be cheaper to

solve BT it e0  for part of n than to solve B Tv . ek for ;ll of v.

Thus full updating of n should be disadvantageous for staircase lPs

under partial pricing.

Selective updating is a practical alternative. Suppose r is

known for periods I,..., t, while at the next iteration 1 will be needed

for periods k, ..., t. If k > t, r can simply be updated: first

B Tv m ek is solved by BTRANt for petiods t,..., k only;thpn periods k

through t of zf are found by the updating formula

17



" ii - (d /c)vq I

On the other hand, if k t t then r can be updated only as far back as

period i. The remainder of ; must be found by solving BT - e0 in

the usual way--except that BTRANL may s the computation of i for

periods i..., . (Alternatively, if it is known that k -, before

pricing begins then it may be cheaper to drop the update step and just

solve B";- - e0  for periods t,..., k of ;.)

Selective updating is essentially a hybrid of methods (a) and (b)

of Section 2. It might be possible to also include (c) in the hybrid,

so that some d 's are updated from v rather than being computed from

ff. However, it is not clear that the additional savings would be worth

the extra complications.

In any event, the steepest-edge methods--(d) and (e)--must compute

all of v to update their weights, regardless of which di s they examine.

Hence these methods require a full BTRANL at every iteration, and cannot

benefit from selective computation or updating of n.

18

... I.. . .



4. ITERATION PATHS OF STAIRCASE LPs

The choice of a variable to enter the basis also largely determines

the variable that leaves. Thus different pricing techniques should be

expected to produce different sorts of iteration paths in the simplex

method.

For staircase LPs the connection between pricing and Iteration

path can be especially strong and clear. This section shows that, when

the staircase basis has a certain sub-structure, an entering variable from

a given period must determine a leaving variable from a certain range ot

periods. Moreover, the basic solution is unchanged outside of this range.

These observations contribute to the esign of staircase partial-pricing

schemes in Section 5.

Restrictions on the outgoing colum

Suppose first that the basis has a square lower-block-triangular

form:

S(11)

B(21) B( 2 2 )

19



Assume further that the incoming column q is zero on all of the rows of

B Then it is easy to see that the outgoing column must be from

B(22): otherwise B(22) would gain a column and the new basis would be

singular. In short, if the incoming column belongs to the second block

then so does the outgoing column.

Consider now the values of the basic variables. They satisfy

Bx - b, where b is the LP's right-hand side; partitioning x and b

in conformance with the blocks of B,

B(11)x (1) b ( I )

B(21)x (1) + B (22)x(2) b ( 2 )

When column q above is brought into the basis, only B(22 ) is altered;

consequently, basic variables x (l) are unchanged. In sum, if the in-

coming column belongs to the second block then the basic solution changes

only in that block.

A parallel analysis applies to any square upper-block-triangular

form of B:

SB( )  BS(12)

(4)

B( 2 2 )

L

20



If the incoming column belongs to the first block then so does the o.ut-

going column, and the basic solution changes only in the first block.

Putting these observations together, B can be imagined to have

a form like this:

B(2 1) B(22) B ( 2 3 ) (5)

where B M)are all square. B (22) is both part of a lower-triangular

block (with B (33) ) and part of an upper-triangular block (with B(1

Thus if the incoming column belongs to the middle block (B (22) ) then

so does the outgoing column, and the basic solution changes only in the

middle block.

Restrictions on the outgoing column of a staircase basis

Typical bases have many block-triangular partitions, and this

fact is used to advantage in sparse Gaussian elimination Ill. However,

there Is generally no clear relation between these blocks and the structure

of the linear program. As a result there is no easy way to keep track

21



ot the blocks from iteration to iteration, and tilre is no reason to

expect that an incoming colun t will belong to one block or anot htr.

The sit uat ion is qu it e di t lerent when B has a st airtcast torm.

Then any square sub-staircase--,s definled ill St'tion -- compt'ises .3 squa:-e

diagonal block. Square sub-st ircases art' easilv kept track ot trom

iteration to iterv.tio sitlce the'v avr detfied by simple tel.t ions like

-il . Mi oreo%'tr. thert' is ever reason to t'xpect that an inoming

variable may lit, o'liti-elv with a square sub-.taicase.

As a cot, quetie st ronger statement.s "al be made, about tile itt'la-

tion path of staircase 1,1's. Rt'vall from Section I that lowur square sub-

staircases arise when v rt

-1 -\" 1 tor some t Il dintl'Al i

above, let Bl i' rpresent tilt' sub-sta I rcase Of tilt' first tI' iods,

while 5 is tile sub-staircase ot periods i +1 throulnl t 1 con-

tains the linkitig block B rhell ali' iltlccilg' c'ot~vil t rom periods

i+l through t must lit, in B . r711, , i'nItusions ot tile preceding

subsectcion can now bt, applied to implv that

if i " Ili$ and if tie incoming columll is from periods

+1 ..... th en tile outgoing column is a Iso from periods

(+.... . t and tile activities of v,tables ill periods

I •.. , ( do not Changte.

Upper square sub-staireases arise similarly in connec't-ion with tihe row-

upper and column-upper forms of B defined in St'ct ion i. B\' analogous

reasoning in conjtint ion with diagram ,.4). it Ian IlSO be concided that

'2t



" if m~ - n, and if the incoming column is from periods

1,.,t, then the outgoing column~ is also from periods

1,.,Z and the activities of variables in periods 2.-,.,t

do not change.t

" if 11 M, n', and if the incoming column is from upper-

staircase periods 1,.,2, then the outgoing column is also

from upper periods 1, X,2 and the activities of v'ariables

in upper periods i~,.,t do not change.

(As defined in Section 1, the upper-staircase periods k,..,2 comprise

the corresponding lower-staircase periods less the period-i linking

columns.)

In the general case B may contain both upper and lower sub-

staircases, producing a situation as in diagram (5). Roughly speaking,

if periods 1I,.., k form a lower square sub-staircase and periods

Z.4-, ... , t form an upper one, then an incoming column from periods

k-9l,..., Z. yields an outgoing coluimn from the same periods and leaves

activities outside these periods unchanged.

Since staircase bases must be well-balanced (Section 1) the

presence of square sub-staircases should not be unusual. Indeed, results

of test runs suggest that bases exhibit several square sub-staircases

more often than not. Furthermorc, it must be kept in mind that the above

statements apply to an staircase partitioning of the LP, not just to

the staircase identified by the modeler. Hence a number of other square

sub-staircases may go unidentified.

23

AW



Prevalence of square sub-staircases is also suggested by the

iteration paths of test runs: only infrequently Is the outgoing column

more than a few periods from the incoming one. For example, the six test

problems of Section 6 (under full pricing) show the incoming and outgoing

variables two or fewer periods apart in 59%. 74%, 85%, 94%, 97%, and 98%

of a'l iterations.

Implications for pricing________V

Square sub-staircases may be viewed generally as creating barriers

to pricing at certain periods. A lower sub-staircase in periods 1 through

t, for example, places a lower barrier at : if the incoming column is

below the barrier then the outgoing column is also below the barrier, only

basic activities below the barrier are changed, and the barrier remains

at the next iteration. The basis and basic activities above the barrier

can change only if the incoming column is above the barrier, and the

barrier is removed only if additionally the outgoing column. is below it.

These facts have important implications for partial pricing. So

long as the candidate set lies in periods below a lower barrier, activities

in periods above the barrier are unchanged. In effect, pricing below the

barrier suboptimizes the LP in the below-barrier periods, while fixing

the above-barrier periods. By contrast, pricing above the barrier

optimizes all the periods and tends to break the barrier down.

Upper sub-staircases naturally have an analogous but opposite

effect: they create upper barriers at certain periods. Pricing above

an upper barrier suboptimizes the LP in above-barrier periods, while fixing

the below-barrier periods.

24

or,.



In general a basis can have several upper and lower barri-rs.

Thus pricing in any one period suboptimizes the periods between tile nearest

preceding lower barrier and the nearest succeeding upper barrier, fixing

the others.

As long as the basis tends to have square sub-staircases,therefore,

partial pricing will tend to promote suboptimization. This may be a good

thing if the suboptima are near the true optimum, or a bad thing If the

suboptima are far from optimal. Both extremes weret observed in the com-

putational experiments in Section 6.

Partial-pricing schemes can be devised either to encourage or

discourage suboptimization. Pricing the same periods repeatedly tends to

create barriers and suboptimize, while pricing throughout the matrix tends

to do the opposite. It is also possible to keep track of tie, number of

columns in each period so as to price where barriers will most likely he

created or destroyed. Strategies along all of these lines are developed

in the following section.

25

4 .~...L



5. PARTIAL PRICING FOR STAIRCASE LPs

It is now clear--given the results of the two preceding sections

--that any partial-pricing scheme for staircase LPs should distinguish

among variables of different periods. Consequently all of the methods

proposed below price essentially one period at a time. These methods

differ considerably, however, in their choices of periods to price and

in their stopping criteria.

Four general procedures for staircase pricing are presented first

below. Subsequent subsections propose and evaluate specific variations

on these procedures.

Simple pricing by period

All methods of partial pricing by period involve some ordering of

(k) (k) (k)_the periods--p1I , p2  Pt -at each iteration k. Assume for the

moment that such an ordering has been chosen, according to one of the

principles suggested later in this section,

The most straightforward method first takes the nonbasics of

period p1(k as the candidate set. If any of these variables has a

favorable reduced cost, one having a largest reduced cost is chosen to

enter the basis. Otherwise the nonbasics of period p2(k are added to

the candidate set; if any of these has a favorable reduced cost, a best

one is chosen. If necessary, the process repeats with p(k (k (k) p

stopping when a favorable d is found in some period. If no favorable

d is found, the current basis Is optimal.

26



Tli1s pro'c~iiire will be Cal led ati p prietiig bv period. A

lra c t t ica Inal gortI thim t o~ nr ry t t eu.t a as f o' I1 tI w

I .RIIPAT FOR IFROM 1 1IV) t:

q(k
CIIOOSF ;%th tlin I I t kil d trnl . i et~

I F d i 'q : NOI C ie t~ etiter lim; RTRllR

I: Declare bain optima~l" ; RVTRN

Tw toleratives are employed. A f ixed tolernniev. ,defl tes the mitial Iest

rt'Wed i'oNt thAt is eioiisidered dl fferetit tivin rero. A dviimc :i'lor~mice,

(k)k)

will noLt let Variable q plter thle hasis mless %I It(

(k) 'k)

liav itig I dk

A sillsiitnvy algovi thim t, requl ted to tiptat e Ik)at vach i it

toi.The getivrai 1dea I A to pick I k) l arge elloti t hatI the choil'.

is I it too far f rom mA x jd j 0 tltt siva 11 I% tigh ti 1.hat ki l I n V er( k t Wk)

V i Od; .A re 11r iced a1t meon t t, Prn t eN Foi- all tests i I Sect toti 1h, (k

is updated ill the telI lowing way:

1 10 1

IFd"(k) (k41) -I (k)

IF ~i(k) (kfI)



In effect ()is a fraction ) of a running ;verage 1t le chosen

reduced costs . To get a good starting value, iM Is set to "Infinity,"

forcing 1(2) - d in sUtep 2, qubsequent\ st- %p I updates 1he moving

average, and step 2 invoked only If all reduced co.qts fall bel 1ow

I ( k )  For a rTnAge of tost problems (ISection h) a * or 0.2 or 0.

usually gave best results.

_Smjei rtc t th threshold

Simple pricing by period might he improved by" Addiug a moro

sophisticated Atopptug rule. For example, a "desiral-le" redul-el Cost

can be de fflned by a v.4lue T(k) (k ) a t ea ch itr.Pa ion: anv va itable

with d T W) is ihmwdlately brought into thl hasbis Without further.ith

pricing. If all reduced costs in a period are loss than T k , the a

. tk)
variable with d k may lie choseln as be tore.

This strategy will he called simple pricing with threshold T

It Is tiescribod Algorithmical lv as fol lows:

SIMPIE PRICING WITH THtRESllO:I)

I: RFPrAT FOR ( FROM 1 t :

.1: REPEAT OR . nonbasic tin riod 11 W

IF d T (k): SolePct I to eiior basis, RETURN

1 .2: cIOOSR q such that d dI  for AIl I i per'iod pt1

(k)
IF d > Select q t o enter aItsi. RFTURN

2: CHOOSE q such that d . d for C - I t...,

IF d q : Select q to ontor basis; H; RETURN
q -

3: Declare bhisl optimal ; RETUIRN

'is



T(k) must be determined along with T(k ) at each iteration. Experinnts

of Section 6 use the formula

T (k) . ,(k)/Y€)

(k)

where I is the parameter for the ( update algorithm above. Since
(k)

T is basically y times a running average of previous reduced costs,

T(k) is a multiple r of the same running average. A I' of 1.1 was

used for most tests in Section 6.

Continuous pricing by period

It is fastest and simplest to price the variables of each period

in some fixed order. As a result, however, simple pricing with theshold

tends to favor the earlier variables in each period: a later variable

is priced only if d < T ( k )  for all of the earlier ones.

To remedy this situation, the pricing algorithm may be moditfled

so that it always continues where it left off at the preceding Iteration.

More precisely, suppose that variable q(k-1) of period p(k-1) waS

chosen to enter the basis at period k-l. Then the revised algorithim,

called continuous pricing by period, proceeds as follows:

CONTINUOUS PRICING:

0: IF q(k-1) is not the last variable in period p(k-1):

0.1: REPEAT FOR j nonbasic in period p (k-) FROM q (k-1)+:

IF d > T(k): Select j to enter basis; RETURN

29



0.2: CHOOSE q0 such that dqo > d for all j priced

in step 0.1

IF d > T(k): Select q0 to enter basis; RETURNFdqo -

1: REPEAT FORL FROM I TO t:
(k) (k-i)

1.1: REPEAT FOR j nonbasic in period p( (TO q

IF p(k) = (k-1))

IF d > T(k): Select j to enter basis; RETURN

1.2: CHOOSE q, such that d > d for all j in period p(k)

IF d > T(k): Select q. to enter basis; RETURN

2: CHOOSE q such that d > d for - 0,..., tq -q
IF d > c: Select q to enter basis; RETURN

3: Declare basis optimal; RETURN

Repeated pricingby period

A special case of continuous pricing always chooses the first-

priced period of the current iteration, p , to be the last-priced period

of the preceding iteration, p(k-) It is easily seen that the effect of

such a strategy is to price all of period p(k-1) before any of the other

periods, in a cyclic fashion. As a consequence the incoming variable is

likely to again lie in p(kl) Indeed, the incoming variable will be

chosen repeatedly from p (k-1) until d < T(k) for every j in that

period.

This idea of repeated pricing by period can be implemented as a

separate (though similar) algorithm, as follows:

30



REPEATED PRICING

0:

(k-1)
0.1: REPEAT FOR j nonbasic in period p

FROM q(k-1)+1 TO end, and FROM start TO q(k-1)

IF d > T(k): Select j to enter basis; RETURN

0.2: CHOOSE qo such that dq0 > d for all j in period p(k-)

IF d > 1(k) : Select q0 to enter basis; RETURN

1: REPEAT FOR Z FROM 1 TO t (UNLESS p (k) . p(k-1))

[same step 1 as simple pricing with threshold]

2: CHOOSE q such that d > d for I- =0,..., tq- cit

IF d > c: Select q to enter basis; RETURNi-

3: Declare basis optimal; RETURN

Pricing cyclically

It remains to specify how the periods will be ordered for any

of these four algorithms. Computational experience has shown that choice

of an ordering is often critical; sometimes running times vary much more

between different orderings than between different algorithms.

An obvious "neutral" ordering is a cyclic one that starts wherever

pricing left off at the previous iteration. Writing p (k-1) for the

last-priced period at iteration k-i, a "forward" cyclic order at iteration

k prices

pp(k-1)+, p(k-1)+ 2 , . , , , 2, . , (k-l)-1 . p(k-1)

or, more formally,

31



I(k-1) (k-I)
(k)

(k-I) + t if p(k-I) + t

Similarly a "backward" cyclic order is p (k-l) ., I, t .. (k-1)

Cyclic orderings are suitable to any of the above algorithms.

Simple or continuous pricing with a cyclic order should discourage sub-

optimization, since tile candidate set is rotated among all the periods.

Repeated pricing, on the other hand, tends to favor suboptimization since

it prices the same period repeatedly. With a cvclic ordering, however,

repeated pricing always moves on to period 1+1 when it has finished with

period i, so at least the suboptimization preceeds cyclically through all

the periods.

Many partial-pricing methods for general Ps use a kind of cyclic

ordering: if J(k-) was the last column priced at iteration k-1, then

pricing at iteration k begins with column j(k-1)+1 (or with colua I if

j (k-) is the last column of the LP), and continues cyclicallv through

all the nonbasic columns until some stopping rule is invoked. Cclic

continuous pricing by period is quite similar, although its stopping rule

does take the periods into account.

If the price vector is only partially computed as suggested in

Section 3, then forward cyclic pricing is preferable. At the start of

pricing, the vector n is computed for periods t, ... pk-)+1 onl

in most cases no more of r will be needed. The remainder of r is

computed only at iterations in which period 1 is priced.

Since extra computation is required at period 1, it may pay to

-(k) 1(k) (k-I)
apply a weaker tolerance r I after periods p +1,.... t

.12

1 ~ -...-A-



have been priced: it d I tor any variable in these periods, the

best candidate so far is selected and pricing of period 1 is put oft to

the following iteration. The tests in Section 6 use the following heurist ic

formu I a:

-(k) =(k)/( (k-1)

The size of the reduction from (k) to (k) is thus tied tnelv to

(k-i)
p , the nmber of addittonal periods for which , must be computed to

price period 1.

Pricing earliest or latest

The simplest possible ordering starts with the first period and

runs forward:

p(k) - 1.. . t

A similar approach starts at the end and works backwards:

(k) " t + I t

With simple pricing, these orderings produce an acceptable Candidate

from the earliest or latest possible period. They seem less suited to

the other algorithms, with which they have a more complicated behavior.

Earliest and latest pricing should both tend to suboptimire

heavily and consistently. They approximate a simple, intuitive strategy:

first optimize the beginning (or end), then work forward kor backward).

Success of such a strategy requires that the suboptimt not be too -ar

from a true optimum.

33



D*rtnKjt!'rc_- P-aUlnt'J bamlt

it was obs~erved in %;c to'n 1 thait stairc.ise bases tevid to' be,

to' Ih1i1'd"Int the -genst. thatt 11 - c -the ext's ot period-C

ee ltu ovor pr tkd-i bi-~Atn.tl very I t* Ir'-M :rVO VI t C Li I pIN r 1 11

ca4n e'ncourage a1 btlI~kI.et' basis by I rvintg to bring celkius tet the l'.tsis

In coe Iunult I ic telit pe rt i , I a I zonve % t t lie otit go ilug c.o I limius h1.41ppeu t 0

be in coltiln-excess lye per iods. t he Overall I .1Iant-Kk ot, the Imsis will

Imp roe.

Mh'e Wes sttggest orderiig te pler tds ,,, thmCt tit MN ,at %'0111111-

defici' ent c'etne t irst. a nd t he ft'st ck'e I wtu-eStX Are ye~t la~st.MIA

t ounwt I lv such 41 eiter ilig S~k tI 1.s t es Ih lt I eo I Itg111 re 14 t I ens (W I th1

qkk)
nt. being the row sid c'e mIm 111MI clt s .4 t ite erat Iton k

11 IN "p t

~ kk tk)

It saeve'ral periodsa tire tited with t he smiin v~illu ot %I kk _ kk they call

he ordered ainng C heince Ivv' in Any wav; it my be wise to lius't, a cycik,

ord.eri1ng (er t his pur'pose. so thmi tie% perioed is mi tm-oavred.

This ordering tuy he tksed with ;%ny ot the 1rh'ltig algovithris. ilt

all c'ase% the eet should he to keeps I ti - r\ I sniml in llt periods.

As a consequnence' " kn - mt1 I tah otId Also tend t.. b N'-MMlI; mid mn

incerease in squAre su ar kae where (11 - t ' 0) should be

exupcted. It pricing for baLanee does oeomrAge sqkiare sttb-stair ca'mes.

it will of course almo tav\or 4%tbopt tillt at i.n.



Atnothe. posible' adv.41tagi o~t a Illk-ed batsi.. whtoae l thet

statis bump-mitd-sapike ti'.1iliqut's o1, [..' art kxe emphd lor Gamwstan

vi tvia lt t %%I A wel I-ba 1nced b'ast.. h~s reltt tvi'v tew " tilt ovi dk

~~piki ll' so, its~ I midJ V t~leto'tm ki'peetal IV the 1 at tel ) uveitk be

sr-v-.Reut Wes'i tor solvingI ilwav sv stoims shoik Id 'it;%t4 as~

give' I t..q to INI te tt-ing vi' wht'tt altv cel ilmllt ist Ir'votht tt the( b,;tl t

it is t t't ee tvqeiv s~lbept ttti . illg peVI10'dm Ietw'ettl tilt lit'.1-1t p 'eit

ioel IN41ttl axid thet IWAI4081 1eedttg Iptl bdtl-vev. I I ite iec'.t ion'.~

Ot I'Al"-t IS O~ll be idetit it t. pIN.t tix Iptiettci tv seekOIN I% mitscn tg u-

ep t trnt: .%t t i NV I.wvilig~ Ietteds ill thelt, e subeq~ -l~pt irni.-at llnit l~

i't:t ite thlt satnh, as t b.I'.ti;ted tt iill. qtev *\cept thatt the

mittbev it - ill ( is INVct' b lte nuttbet, elt tie ios bet ween thilt, I4-

Ill It iNeV r td s,. aee Imst" uppe 1111A b tmo ts eltest W itette

soom.ns at hore les t;%,tsk toe kove tra~ck M' the batt er. inl evetv Nil%, I t I

much metv 1tstA.ctbiN e toe t ,V toe de ei'tIle thet uppeItl ;%%W I OetI',;%It i'at I Se Ill

0M, S t Ait,%,'~ teI-M, ats de tliI ie in Si', t A 'Ni 4. t h11s wU-\%Id te~n q% ev .t t In-, t

keepitig trtack ot th hi'nmber io et I ivik ivg mtd nei- I WItikitt -olmillts 1tt ed.h

1''tid o I ht lit1s t s . s th lt% Iumbea rs ol t vos .4 re t i \,5 d. Stetn ol his

ini I t-t t t t avid cheek tigf ort IN:rvt I s kc'M beR 0t;t V g~l : I At it 1V It c en I Iv

I'tlevo1,t tilat velyV it ret1 lls -.It Vt t te8 st A11,. %% teotm thImt theit I't S IS

it1her I t se t m t he 1r1 Nttl. .iel'. ill t hi,%'1 cettespettdt te11) eeWOd - St Alt cASe

I erm 'o~ t i e 'I 1V AO tMd t ec It Otd



If the column-upper-staircase form of the basis is monitored,

upper barriers will occur between the linking and non-linking columns of

the same (lower-staircase) period. Thus it can be advantageous to con-

sider the basis as having 2t - I "half-periods": half-period 2C - 1

comprises the non-linking columns of period t, and half-period R( the

linking columns. Half-periods are then ordered as above, and any of the

algorithms may be modified to price a half-period instead of a period at

a time. (The tests in Section 6--which monitored lower and column-upper

barriers only--used a scheme of this sort.)

Barrier orderings are suitable to either simple or continuous

pricing by period. There is not much point in using these orderings with

repeated pricing, which tends to encourage rather than discourage sub-

opt imizat ion.

36



6. COMPUTATIONAL EXPERIENCE

This section reports on initial computational experiments with

some of the preceding suggestions for partial pricing by period. Results

show, not surprisingly, that partial pricing is considerably superior to

full pricing when reduced cost is the only pricing criterion. Tests also

confirm that partial computation of the price vector affords noticeable

savings.

Most importantly, in several cases best results are achieved by

specialized staircase pricing methods that differ substantially from the

common general methods. Partial pricing by period thus appears to offer

savings not otherwise available. Such a conclusion is further borne out

by comparisons with the performance of a standard commerical LP code.

Experimental setup

For the test runs an existing LP code, MINOS 115,171,was modified

to recognize staircase structure and to apply staircase techniques. Since

MINOS employs a bump-and-spike approach for sparse Gaussian elimination,

the staircase bump-and-spike technique [2] was added as an option in the

test version. Various optional pricing algorithms were also added, but in

such a way that all use the same main loop for actually computing reduced

costs. Timings for test runs with different options can thus be meaning-

fully compared.

The test code is programmed in FORTRAN. Further details of the

code and the experimental setup are in Appendix B.

Owing to a limited (though large) computing budget, testing was con-

fined to the following seven methods of partial pricing by period:

37



Ordering of periods Algorithm

cvclic simple

cyclic continuous

cyclic repeated

earliest simple

latest simple

balanced simple with threshold

barrier simple with threshold

Different values of tolerance parameter ' were first tested with one

if the cyclic orderings: the y that gave best results was then used for

the other methods. The threshold parameter r was generally fixed at

1.1; a few tests at lower values gave no better results.

Six medium-scale linear programs of dissimilar proportions were

employed in the experiments. Their overall dimensions are as follows:

PERIODS ROWS COLUMNS NONZEROES

SCARGR25 25 472 500 2208

SCRS8 16 491 1169 4106

GROWl5 15 301 645 5666

SCFXM3 12 991 1371 8204

SCTAP2 10 1091 1880 8645

SCSD8 39 398 2750 11349

till experiments measured the total time and iterations to find an optimal

solution from a feasible starting basis; the test code could just as well

have started from an infeasible basis, but a feasible start was more

economical and made the results easier to interpret. The starting bases

were themselves produced from an all-slack start, using full pricing so

38



that no method of partial pricing would be favored. Additlonal iniormatlion

about the test 1.Ps is collected in Appendix A.

In interpretinmg the results it should be kept In mind that total

itteri tt bs fire ai somewhat stochAst ic quantity that ttmay vary by as much

is lOx when evel snaill chalges are made. Proport ional l y snal l di fferences

in iteration totals should thus not be' taken too seriously. Many t:b lv.s

give hoth iterations and seconds per 100 iterations, so that It can I'

seen'i c'early flow Imu[Ich of filly improvee'nlt is due to Ittert :on count aund

how much to iteratton speed.

Run tines are also Iinprecise, but much less so. ''lmes prescuted

here have been rounded to avoid false precision, but all ratios and per-

cvtetages have been calculated from the original readings.

Overfill results

As a point of re ference, thlt t est proble|ms were first run with

full greatest-reduced-cost pricing. All were tried both with Iand without

a s imp I e geomet ric-mean scal ing (described In Appendix Ii) : RS RO HW I S

aind Sc'rAP2 showed notably fewer iterations scaled, while S(AG;R2') and

SCSI) rtquired fewer Iterations unsealed. SCFXl'3 needed about the samute

numbers of iterations scaled find unscaled, but the scaled version was

preferred biecatuse it had it much smaller range of vo'ef f Icient magn it uds.

Results of full pricing with the preferable scalings were as

I ol lows:

39



FUIL PRICING
Tl'O'AL

SCALED? ITERATIONS CP) SEC/ I/ _I'ER CPUSEC

SCACR25 NO 296 4.8 14.1

SCRS8 YES 342 6.3 2 1.6

GROW15 YES 572 S,.8 2.4

SCFXM3 YES 478 10. SO.'

SCTAP2 YES 540 10.6 '."

SCSD8 NO 900 10. 0 40.0

In Informal tests scaling seemed to affect partial pricing in the same way

ais full pricing, and so the above choices of scalting or no scalintg were

kept throughout the tests.

Experiments with the parameter N yielded the t ollowing settings:

SCAGR25 .5

SCRS8 .2

GROWl5 .2

SC.FXM3 .2

SCTAP2 .05

SCSD8 .5

As expected, a higher , tended to reduce the number of iterations but

to increase the cost pet" iteration. SCSI)8 was an extreme case (with con-

tn uous cyclic pricing):

40



iterations clMusec/lO__iter total c u sec

1.0 906 7.0 63.1

0.5 998 3.9 '18.

0.2 1338 3.6 48.4

In other cases the choice of y was not so critical. St'TA!'2 seemed (o

require about the same number oU iterations for any ' in the range

0.5-0.01, and so its best setting was smaller than the average.

The best partial-pricing test runs--in terms of total ('111

seconds--were as follows:

BEST RUNS CPU SEC/ TOTAL % OF FULL
ORDER METHOD ITERATIONS 100 ITER CPU SEC PRICINC

SCAGR25 balanced simple w/thr 333 3.9 13.0

cyclic continuous 348 3.9 13.5 44

SCRS8 latest simple 272 4.5 12.2

GROW15 cyclic repeated 508 3.8 11.4

SCFX43 cyclic repeated 514 7.0 39.9 711

SCTAP2 cyclic continuous 614 6.4 39.1 68.
cyclic simple 642 6.1 39.4 oQ*.

SCSD8 cyclic repeated 996 3.8 38.1 4 1

cyclic cont tnuous 998 3.9 48.1 4 4%

The diversity of best methods is striking: of the seven methods tested,

five showed up as best or near-best on at least one problem. Significant IV,

the one method most similar to non-staircase methods--cv'c itc cout tuous

pricing--was never a unique best, and was not among the best at all In

half the cases. Thus a strong case is made for staircase pricing by period.

41



Four of the six problems showed the expected behavior of partial

pricing versus ful 1 pricing: an increase in number of iterations, but a

compensating decrease in time per iteration. SCRS8 and CROWlS, however,

show a decrease over full pricing In both iterations and time per itera-

tion, and their total running times are reduced dramatically. The only

greater reduction Is for SCSD8, whose timings for full pricing are inflated

by its huge number of columns.

rhe reduction of iterations for SCRS8 and GROWl5 is accomplished

in both instances by pricing methods that tend to suhoptimize. It thus

appears that in some cases suboptimization is a highly successful strategy:

it simultaneously shortens the iteration path and makes each iteration

cheaper.

Overall, partial pricing was decisively superior to full pricing

for all but the smallest LP, SCAGR25. Not too much should be made of this

comparison, however, since full pricing by greatest reduced cost Is

seldom used in practice. It is more meaningful to compare these results

with non-staircase partial pricing, as is done at the end of this section.

A comparison with steepest-edge pricing (which is always full) would also

be revealing, but unfotunately MIINOS Is not set up for the required cal-

culations. Nevertheless, it does seem unlikely that a steepest-edge

criterion could reduce the number of Iterat tons for SCRS8, GROWlS or

SCSD8 sufficiently to overcome the efficiencies of partial pricing.

Best results aside, different methods varied considerably in how

close they came to best over the range of problems. Each method is examined

individually below. At the end of this section the best times are

again considered, in comparisons with non-staircase methods.

42



Cyclic pricing by period

Simple cyclic pricing by period generally gave acceptable, if not

impressive, results:

SIMPLE CYCLIC PRICING

CPU SEC/ TOTAL % OVER
ITERATIONS 100 ITER CPU SEC BEST RUN

SCA(GR25 415 3.6 15.0 15%

SCRS8 429 4.0 17.2 42%

GROW15 588 4.8 28.0 44%

SCFXM3 510 7.6 38.7 8%

SCTAP2 642 6.1 39.4 1%

SCSD8 969 4.3 41.3 8%

Here the typical tradeoff with full pricing--more iterations, less time

per iteration--is found in every case. Thus worst results are with

SCRS8 and GROW15, for which this tradeoff can he avoided by other methods

as discussed above.

Continuous cyclic pricing improved upon the simple version in

every instance:

CONTINUOUS CYCLIC PRICING
CPS SEC/ TOTAL % OVER

ITERATIONS 100 ITER CPU SEC BEST RUN

SCAGR25 348 3.9 13.5 4%

SCRS8 355 4.0 14.3 18%

GROWl5 600 4.5 27.2 40%

SCFX43 526 7.3 38.3 7%

SCTAP2 614 b.4 3q.1 0%

SCSD8 998 3.9 38.6 1%

43



Thus the more sophistciated stopping rule of continuous pricing does pay

off. Continuous cyclic pricing was most uniformly reliable of the methods

tested, and should be preferred when no time is available for testing

other methods.

By contrast, the performance of repeated cyclic pricing was

somewhat mixed:

REPEATED CYCLIC PRICING
CPU SEC/ TOTAL Z OVER

ITERATIONS 100 ITER CPU SEC BEST RUN

SCAGR25 396 3.7 14.6 12%

SCRS8 375 4.0 15.2 25%

GROW15 508 3.8 19.4 0%

SCFXK3 514 7.0 35.9 0%

SCTAP2 1115 6.1 68.4 75%

SCSD8 996 3.8 38.1 0%

Repeated pricing is best in half the cases, but significantly worse in

the other half. In the worst case, SCTAP2, it would be a disaster. Yet

time per iteration is consistently no greater than for continuous pricing;

the determining factor is number of iterations.

The behavior of repeated pricing confirms what one would expect

of a method that tends to suboptimize. When suboptimization works well,

it finds a short iteration path at low cost; when it works poorly it

tends to get stuck at suboptimal solutions and the iteration path may

be unduly long.

44



Earliest and latest pricing by period

Signs of suboptimization are especially clear in the results of

simple earliest and simple latest pricing:

SIMPLE EARLIEST PRICING _

CPU SEC/ TOTAL 2 OVER
ITERATIONS 100 ITER CPU SEC BEST RUN

SCAGR25 467 4.2 19,5 50%

SCRS8 879 4.7 41.6 242%

GROWl5 605 4.4 26.7 38%

SCFXM3 625 8.9 55.3 54%

SCTAP2 >1479 (8.0) >120.0 >200%

SCSD8 >2000 (4.0) > 79.7 >100%

SIMPLE LATEST PRICING
CPU SEC/ TOTAL % OVER

ITERATIONS 100 ITER CPU SEC BEST RUN

SCACR25 391 3.8 14.9 142

SCRS8 272 4.5 12.2 0%

GROWl5 1387 4.6 63.7 228%

SCFXM3 587 7.7 45.0 25%

SCTAP2 1200 7.1 84.9 117%

SCSD8 >2000 (5.7) >112.9 )2001

The pattern is similar to that for repeated cyclic pricing, but more

pronounced: huge variations in performance from problem to problem.

with number of iterations the most important factor. Three runs were

so hopelessly long that they were stopped prior to optimality; lower

bounds on their results are indicated by notations such as "'2000".

45



Curiously, earliest pricing is much better than latest on half

the problems, while latest is much better than earliest on the other

half. There seems no obvious explanation for this dichotomy, except to

say that it is due to the different natures of the problems.

Results are probably also strongly influenced by the choice of

starting basis. In the case of SCTAP2, for instance, early tests showed

that simple latest pricing is much superior to simple cyclic pricing when

the initial basis is all-slack. Indeed, latest pricing required only 1177

iterations from an all-slack start, compared to 1200 from the feasible

start above!

Clearly pricing methods that suboptimize can give spectacular

results. But they are not uniformly effective, and only preliminary test-

ing can determine whether they are appropriate to a particular LP.

Balanced pricing by period

The results of simple balanced pricing with threshold were for the

most part uniformly mediocre:

SIMPLE BALANCED PRICING (WITH THRFSHOLDJ_.....
CPU SEC/ TOTAL 2 OVER

ITERATIONS 100 ITER CPU SEC BEST RUN

SCAGR25 333 3.9 13.0 0%

SCRS8 323 4.7 15.1 25%

GROWlS 634 5.0 31.5 (12%

SCFXM3 729 7.9 57.4 60%

SCTAP2 884 6.5 57.7 482

SCSD8 1173 4.6 54.0 42

46



Times per itteration are generally worse than for cyclic pricing;

apparently there are not very many acceptable candidates in column-

deficient periods, and more reduced costs must be computed. Iteration

counts are also greater except for SCAGR25 and SCRS8. SCAGR25 is the

only clear success.

Barrier pricing by period

Simple barrier pricing with threshold was worse than simple

cyclic pricing in every instance:

SIMPLE BARRIER PRICING (WITH THRESHOLD)
CPU SEC/ TOTAL % OVER

ITERATIONS 100 ITER CPU SEC BEST RUN

SCAGR25 442 4.1 17.9 38*4

SCRS8 386 4.7 18.1 49**

GROW15 603 5.1 30.5 57%

SCFXK3 524 7.9 41.6 16%

SCTAP2 957 6.0 57.8 48%

SCSD8 1231 4.1 50.2 320*

Better times per iteration and fewer iterations were achieved by cyclic

pricing in most cases.

Possibly barrier pricing employs too simple a criterion to he

effective. As implemented in the tst code, it looks only for square sub-

staricases in the lower-staircase and column-upper-stairca .e forms

inherited by the basis; it may overlook other pricing barriers. This

47



hypothesis is supported somewhat by the following table, which lists

average numbers of lower square sub-staircases in the reduced-staircase

form of the basis, as reported by MINOS's basis-factorization routine:

MEAN LOWER SQUARE SUB-STAIRCASES

CYCLIC CYCLIC
FULL (CONTINUOUS) (REPEATED) EARLIEST LATEST BALANCED BARRIER

SCAGR25 1.7 2.8* 3.7 3.6 3.3 3.1* 2.0

SCRS8 4.0 2.1 1.2 1.2 5.2* 2.9 2.0

GROWl5 9.7 11.6 12.0* 10.9 9.8 9.9 11.1

SCFXM3 2.4 2.8 2.5* 3.0 3.8 2.7 2.4

SCTAP2 4.9 3.9* 2.8 1.5 3.3 2.2 1.8

SCSD8 2.2 2.7* 8.2* 1.5 16.4 8.7 3.5

Best runs

The figures vary considerably from one pricing method to the next, yet no

strong pattern emerges. One may conclude that pricing strongly influences

the barrier structure of the basis, but in a complex way.

Partial computation of the price vector

All of the runs reported to this point used a staircase "bump-and-spike"

pivot order in Gaussian elimination, and hence computed only part of the

price vector as described in Section 3. To determine the value of this

arrangement, six of the best runs were duplicated twice with full computa-

tion of w: once using the same staircase pivot order, and once with the

standard pivot order.

48



Although theoretically the pivot order and computation of .

should have no effect upon the iteration path, in practice small

numerical differences can result in quite different paths and different

numbers of iterations. Thus times for the full-A runs below were normalized

to reflect the same number of iterations as the partial-n run.

Results of these tests were as follows:

CPU SECONDS, r COMPUTED AS FOLLOWS:
PARTIAL: FULL: FULL:

ORDER METHOD STAIR PIV STAIR PIV STANDARD VIV

SCARG25 balanced simple w/thr 13.0 14.2 (- 8%) 13.9 (- 7%)

SCRS8 latest simple 12.2 13.5 (-10%) 13.8 (-12.)

GROW15 cyclic repeated 19.4 21.9 (-11%) 22.0 (-12%)

SCFXM3 cyclic repeated 35.9 38.2 (-6) 38.6 (- 7%)

SCTAP2 cyclic continuous 39.1 42.7 (-8%) 42.0 (- 7%)

SCSD8 cyclic continuous 38.6 44.1 (-12%) 45.0 (-16%)

Partial computation of w is seen to offer a modest but consistent saving

of 6-12%. With full computation of n the staircase pivot order offers

no advantage over the standard order except for SCSD8.

These findings confirm those of [2]. It is possible, as suggested

in [21, that other staircase pivot-ordering techniques may handle some

of these LPs better than the bump-and-spike technique; but the savings

through partial computation of n should be realized equally well with

any staircase ordering.

49



Comparison with a commercial code

To compare staircase pricing to a traditional approach, the six

test problems were also solved with the WHIZARD LP code of the HIPS III

system [14). WHIZARD is a commercially marketed assembly-language code

that should be inherently faster than the FORTRAN test version of

MINOS. However, a comparison of the iteration counts and timings should

give some rough idea of the practicality of staircase pricing techniques.

WHIZARD employs a combination of partial and multiple pricing

with a maximum-reduced-cost criterion. Optional scaling is available, and

was used with the four LPs that were scaled for MINOS. Details of the

WHIZARD runs appear at the end of Appendix B.

The best MINOS runs for each LP compare with the WHIZARD runs

as follows:

ITERATIONS SEC/l00 ITER TOTAL SEC MINOS VS
MINOS WHIZ MINOS WHIZ MINOS WHIZ WHIZARD

SCAGR25 333 301 3.9 4.1 13.0 12.2 + 7%

SCRS8 272 499 4.5 3.6 12.2 16.1 -24%

GROWl5 508 788 3.8 3.3 19.4 26.1 -26%

SCFXM3 514 524 7.0 5.5 35.9 28.5 +26%

SCTAP2 614 658 6.4 4.5 39.1 29.4 +33%

SCSD8 996 1077 3.8 3.7 38.1 39.4 - 3%

Surprisingly, MINOS was faster in half the cases and significantly slower

in only two. This favorable showing can be explained largely by the

advantages of staircase pricing.

50

-- Ah



Staircase pricing under MINOS required substantially fewer

iterations with SCRSB, GROWl5 and SCSD8, offsetting any disadvantage

in time per iteration. Hence MINOS was actually faster for these

problems. Moreover, in the cases of GROWl5 and SCSD8 the MINOS times

per iteration were not much greater than the WHIZARD times; it appears

that MINOS made up for its inherent slowness by cnmputing only part of n

and by pricing far fewer variables per iteration. (It is hard to say

anything more precise, however, since WHIZARD does not report the

number of variables priced.)

SCAGR25 reversed the situation: it traded more iterations under

MINOS for slightly less time than WHIZARD per iteration. On the whole

MINOS came out only slightly behind.

For SCFXM3 and SCTAP2 the numbers of iteration were comparable

and WHIZARD had the expected edge in time per iteration. As a result

MINOS was about 30% slower overall, a respectable showing considering

the inefficiencies of FORTRAN.

These results suggest that a truly fast implementation of stair-

case pricing--perhaps incorporating machine language in critical portions

--would be advantageous in almost every case and highly advantageous in

many cases. If the best methods of [2] were also implemented, some stair-

case LPs could well be solved in a half or even a quarter of the time

currently taken by the fastest codes.

501



APPENDIX A: TEST PROBLEMS

The linear programs used for the computational experiments of

Section 6 are described in greater detail below. The tabular summaries

for each LP are largely self-explanatory, but a few general notes are

appropriate:

All statistics except OBJ ELEMS refer only to the staircase

constraint matrix, excluding the objective row and right-hand side. In

each case the constraint matrix, A, has been put in reduced standard

form; DIAGONAL BLOCKS refers to the staircase blocks A , and OFF-DIAGONAL

BLOCKS to the blocks

Variables (columns) are implicitly constrained only to be non-

negative, unless there is an indication to the contrary. BOUNDED implies

implicit lower and upper bounds.

MAX ELEM and MIN ELEM are the largest and smallest magnitudes of

elements in A; LARGEST COL RATIO is the greatest ratio of magnitudes

of any two elements in the same column of A. Where values are given

BEFORE SCALING and AFTER SCALING, all tests were conducted ith A

scaled as described in Appendix B. Otherwise NO SCALING is indicated.

52

i



SCAGR25

Test problem received from James K. Ho, Brookhaven National

Laboratory, Upton, N.Y.; source not documented.

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS Oi,]
PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS

1 18 20 45 13% 8 7 17 30Z 19

2-24 19 20 4, 12% 8 7 17 30Z 19

25 l6 20 43 13% 19

1146 12% 408 30% 475

GRAND TOTALS

ROWS 471 (300 EQUALITIES, 171 INEQUALITIES)

COLS 500

E L1EMKS 1554

DENS 0.7%

NO
COEFFICIENTS SCALING

MAX ELEM 9.3

MIN ELEM 2.0 x 10-i

LAR(EST COL RATIO 1.9 x 101

53



Opli ve'l rvi a windel of thie Itlii d eq olstitons for a

t 1 4*11 I i t O t o l ( I 1 ld AA t 0 A I t lite t I I f 114 19 %I%,' knollted 1in Q' I I3I

I'IAtONAI, I1ICS OV- AtONAI,11.ol ORJ~

74 1$ PQ (4 I's~ P

7' 11

17478 At~ 41

tl--t' 4QO ('18 KIsfiI.S 106 INQAII

COKF41 CI. RNTS 8 "A. NN

MAX( Ft.VM 1.4A to1 4 .0

MIN FI.FN 1 .0 %k 10 1 .11 10

t.ARG~EAT cOIL RA1 10 4 .N 'It 10l I . lot1



GROWl5

A simple dynamic input-output 11 constructed for test purposes.

It is based on the following model: define sets.

rND set of goods

OBJ set of export goods: a subset of INV

and parameters,

T number of periods

a 1  units of good t needed to produce I unit of good .;

t, J t IND

Il maximum produQ't Io o f good I il l pe vi od I f I ND

0 liroportiot of m1  that may be stored;

om t is maximum stock of good I at beginning of a period

Pit expected incomw per unit of good I in period t.

i t O11.1, t = 1. .. T

Thetl the variables are

Xit production of good i in period t; I t IND, t 1 |..., T

sIt stock of good i at beginning of period t.

I t INIO, t I-1, ., T+l

and the LP is

Ejr



maximize IT. ytOBt O,! Pit 3it

subject to 8ilt+! - sit + xit +4 IND aixt i IND, t-I.....T

0 < Xit < M i t tIND, t- ! .... ,T

0 < sit ,om i  i ( IND, t- I,.T+I

For GROWI5, T - 15. The values of a j and mI weiv taken from a

20-sector input-output analysL of the U. S. econoty in 131. A set OB

of size 3 was picked arbitrarily, as were the values pit; o was set at 0. 1.

DIAGONAL BLOCIS OFF-DIAONAL BLOCKS On.)
PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS

1-14 20 43 356 41% 20 20 20 51 3

15 20 43 356 412 3

5340 411 280 51 45

GRAND TOTALS

ROWS 300 (ALL EQUALITIES)

COLS 645 (510 BOUNDED)

ELEMt 5620

DENS 2.9%

BEFORE AFTER
COEFFICIENTS SCALING SCALING

MAX ELEM 1.0 1.2 X 10

MIN ELEM 6.0 X 10 -  8.1 X 10 - 3

LARGEST COL RATIO 1.3 x 105  1.5 X 104

56,

k I



SCFXD3

Test problem received from James K. Ho, Brookhaven National

Laboratory, Upton, N.Y.; source not documented.

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OBJ

PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS

1 92 114 679 6% 9 57 61 12% 13

2 82 99 434 5% 9 35 35 11% 4

3 66 126 300 4% 5 33 33 20% 1

4 90 118 1047 10% 5 5 5 20% 5

5 92 114 679 6% 9 57 61 12% 13

6 82 99 434 5% 9 35 35 11% 4

7 66 126 300 4% 5 33 33 20% 1

8 90 118 1047 10% 5 5 5 20% 5

9 92 114 679 6% 9 57 61 12% 13

10 82 99 434 5% 9 35 35 11% 4

11 66 126 300 4% 5 33 33 20% 1

12 90 118 1047 10% 5

7380 7% 397 13% 69

GRAND TOTALS

ROWS 990 (561 EQUALITIES, 429 INEQUALITIES)

COLS 1371

ELEMS 7777

DENS 0.6%

BEFORE AFTER

COEFFICIENTS SCALING SCALING

MAX ELEM 1.3 x 102 1.1 x 101

KIN ELEM 5.0 x 10 - 4  8.7 x 10 - 2

LARGEST COL RATIO 1.3 x 105 1.3 x 102

57

I A



SCTAP2

A dynamic traffic assignment problem, documented in [10). The

LP has 11 objective rows; the one named OBJZZZZZ was used in all tests,

and the other ten were deleted. Statistics below omit the ten deleted

objective rows.

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OBJ
PERIOD ROWS COLS ELEMS DENS ROWS C(OLS ELEMS DENS ELEMS

1-9 109 188 423 2% 62 138 276 3% 141

10 109 188 423 2% 141

4230 2% 2484 3% 1410

GRAND TOTALS

ROWS 1090 (470 EQUALITIES, 620 INEQUALITIES)

COLS 1880

ELEMS 6714

DENS 0.3%

BEFORE AFTER
COEFFICIENTS SCALING SCALING

MAX ELEM 8.0 x 101 2.5

MIN ELEM 1.0 4.0 x 10-1

LARGEST COL RATIO 8.0 x 10 6.4

58



SCSD8

A multi-stage structural design problem, documented in [8].

This is the only staircase test problem in which the states do not

represent periods of time.

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OBJ
PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS

1-38 10 70 130 19% 10 50 90 18% 70

39 17 90 224 15% 90

5164 18% 3420 18% 2750

GRAND TOTALS

ROWS 397 (ALL EQUALITIES)

COLS 2750

ELEMS 8584

DENS 0.8%

NO

COEFFICIENTS SCALING

MAX ELEM 1.0

MIN ELEM 2.4 x 10- 1

LARGEST COL RATIO 4.0

59



APPENDIX B: DETAILS OF COMPUTATIONAL TESTS

Computing environment

All computational experiments were performed on the Triplex

system (191 at the Stanford Linear Accelerator Center, Stanford University.

The Triplex comprises three computers linked together: one IBM 360/91

and two IBM 370/168s. Runs were submitted as batch jobs in a virtual-

machine environment, under the control of IBM systems OS/VS2, OS/MVT

and ASP.

Test runs employed a specially-modified set of linear-programming

routines from the MINOS system [15,17]. MINOS is written in standard

FORTRAN. For timed runs, MINOS was compiled with the IBM FORTRAN IV

(H extended, enhanced) compiler, version 1.1.0, at optimization level 3

(111.

Timings

All running-time statistics are based on "CPU second" totals for

individual job steps as reported by the operating system. To promote

consistency all timed jobs were run on the Triplex computer designated

"system A," and jobs whose timings would be compared were run at about

the same time. Informal experiments showed roughly a 1% variation in

timings due to varying system loads.

60



MINOS linear-programing environment

MINOS was set up for test runs according to the defaults indicated

in 1151, with the exception of the items listed below.

Scaling. Problems noted as "scaled" in Appendix A were subjected

to the following geometric-mean scaling (where A denotes the matrix of

constraint coefficients, not including the objective or right-hand side):

1: Compute P0 - maxiAlj/A A2 , A 2 0.

2: Divide each row i of A, and its corresponding right-hand side

value, by [(min iAij (max iAij 1)1 1 / 2 , taking the minimum

over all Aij 0 0.

3: Divide each column j of A, end its corresponding coefficient

in the objective, by [(min i(A j)(max iA ij1)1/2

taking the minimum over all Aij 0 0.

4: Compute o - maxiA il/A 2I , A 2 0.

This procedure was repeated as many times as possible until, at step 4,

P was at least 90% of P (In other words, scaling continued as long

as it reduced P, the greatest ratio of two magnitudes in the same column,

by more than 10%.)

Starting basis. A feasible starting basis was determined for

each LP as follows. MINOS was slightly modified so that it would stop

and save the first feasible basis obtained; each LP except GROW15 was

run on this modified version, from an all-slack start (crash option 0)

61



with full pricing. The saved feasible basis was used as a starting

basis in all subsequent test runs. For GROWL5 an all-slack basis is

feasible, and so all test runs of GROWl5 employed an all-slack (crash

option 0) start.

Termination. Virtually all test runs terminated at an optimal

solution. However, three runs--as indicated in Section 6--were

terminated short of optimality because they required too much time or

too many iterations.

Basis factorization. The staircase bump-and-spike factorization

of 12] was employed in all test runs except as indicated otherwise in

Section 6.

Refactorization frequency. The "INVERT FREQ" for MINOS was set

to 50; hence MINOS refactorized the basis (by performing a fresh

Gaussian elimination) every 50 iterations.

Tolerances. The "LU ROW TOL" for MINOS was set to 10-  All

other tolerances were left at their default values.

62



Modifications to MINOS

All MINOS runs described in this paper were made with a special

test version of MINOS5. This version was essentially the same as the

special test version described in Appendix B of [2), except for modifi-

cations to subroutine PRICE to implement the algorithms of Section 5.

Modified subroutines that are particularly important to pricing

are described briefly as follows:

BTRANL optionally computes only part of the price vector as

outlined in Section 3. (There is no provision for updating the

price vector.)

SETHI determines the price vector back to a specified period,

calling BTRANL as necessary.

PRICE chooses a nonbasic variable to enter the basis, employing

either full pricing or one of the partial-pricing methods described

in Section 5. Reduced costs are computed from the price vector

by method (a) of Section 2. SETPH is called one or more times to

get needed parts of the price vector.

SPECS2 determines which pricing method and algorithm will be used

in a particular run, and sets the parameters y and r, according

to instructions in the SPECS input file.

Other modifications are summarized in Appendix B of [2].

63



MPS III linear programming environment

For purposes of comparison all test problems were also run on

the MPS III system [141, as explained in Section 6.

MPS III runs employed the WHIZARD linear-programming routines of

version 8915 of MPS III. Starting bases were the same as for the MINOS

runs, and termination was at an optimal solution in every case. CPU

timings reported in Section 6 include both the compiler and executor steps.

The control program for a typical MPS III run was as follows:

PROGRAM
INITIALZ
XPROC = XPROC + 6000
XCLOCKSW-O
XINVERT=l

XFREQINV = 50
XFREQLGO=l
XFREQl= 3000
MVADR(XDQFREQ1 ,TIME)
MOVE(XDATA, 'SCRS8')
MOVE (XPBNAME, 'SCRS8')
CONVERT('FILE' ,'INPUT')
SETUP('MIN' ,'SCALE')
MOVE (XOBJ,')COST)
MOVE(XRHS, 'RHS')
INSERT( 'FILE' ,'PUNCH1')

WRIZFREQ DC (250)
WHIZSCAL DC (4)

WHIZARD ('SCALE' ,WHIZSCAL)
TIME EXIT

PEND

Control programs for the other LPs were essentially the same. However,

the 'SCALE' parameter was dropped from the SETUP and WIIZARD lines for

SCAGR25 and SCSD8, since these two LPs were unsealed in all of the

MINOS runs.

64



REFERENCES

[11 Fourer, Robert, "Sparse Gaussian Elimination of Staircase Linear
Systems." Technical Report SOL 79-17, Systems Optimization Labo-
ratory, Dept. of Operations Research, Stanford University (1979).

[21 _ , "Solving Staircase Linear Programs by the Simplex Method,
1: Inversion." Technical Report SOL 79-18,, Systems Optimizaition
Laboratory, Dept. of Operations Research, Stanford University (1979).

(31 Glassey, C. Roger and Peter Benenson, "A Quadratic Programming
Analysis of Energy in the United States Economy." Report ES-116,
Electric Power Research Institute, Palo Alto, CA (1975).

[4] Goldfarb, D., "On the Bartels-Golub Decomposition for Linear
Programming Bases." Mathematical Programming 13 (1977), 272-279.

[5] and J. K. Reid, "A Practicable Steepest-Edge Simplex
Algorithm." Mathematical Programming 12 (1977), 361-371.

(61 Harris, Paula M. J., "Pivot Selection Methods of the Devex LP Code."
Mathematical Programming 5 (1973), 1-28.

[7] Herman, Richard J., "Dynamically Restricted Partial Pricing in
the Simplex Method for Linear Programming." Report RC 7151, IBM
Watson Research Center, Yorktown Heights, N.Y. (1978).

18] Ho, James K., "Optimal Design of Multi-Stage Structures." Computers
and Structures 5 (1975), 249-255.

(9] _ , "Nested Decomposition of a Dynamic Energy Model." Manage-
ment Science 23 (1977), 1022-1026.

(101 _ , "A Successive Linear Optimization Approach to the Dynamic
Traffic Assignment Problem." Report BNL-24713, Brookhaven National
Laboratory, Upton, N.Y. (1978).

[11] IBM OS FORTRAN IV (H Extended) Compiler Programmer's Guide. No.
SC28-6852, International Business Machines Corp. (1974).

(121 Kuhn, Harold W. and Richard E. Quandt, "An Experimental Study of the
Simplex Method." Proceedings of Symposia in Applied Mathematics 15
(American Mathematical Society, 1963), 107-124.

[131 Manne, A. S., "U. S. Options for a Transition from Oil and Gas to
Synthetic Fuels." Discussion Paper 26D, Public Policy Program,
Kennedy School of Government, Harvard University (1975).

[14] MPS III Mathematical Programming System: User Manual. Ketron, Inc.,
Arlington, VA (1975).

65



1151 Murtagh, Bruce A. and Michael A. Saunders, "MINOS: A Large-ScaleNonlinear Programming System (For Problems with Linear Constraints).,Technical Report SOL 77-9, Systems Optimization Laboratory, Dept.of Operations Research, Stanford University (1977).
[161 Orchard-Hays, William, Advanced Linear-Prograing ComputingTechniques (New York: McGraw-Hill Book Co., 1968).
[171 Saunders, Michael A., "MINOS System Manual." Technical ReportSOL 77-31, Systems Optimization Laboratory, Dept. of OperationsResearch, Stanford University (1977).
[181 Tomlin, J. A., "On Pricing and Backward Transformation in LinearProgramming." Mathematical Programming 6 (1974), 42-47.
[191 Vinson, Ilse, "Triplex User's Guide." User Note 99, SLAC Computing

Services, Stanford Linear Accelerator Center (1968).[201 Wolfe, Philip, "The Composite Simplex Algorithm." SIAM Review 7(1965), 42-54.

[21] and Leola Cutler, "Experiments in Linear Programming."Recent Advances in Mathematical Programinn, R.L. Gravesand Philip Wolfe, eds. (New York: McGraw-Hill Book Co., 1963),177-200.

66



S ~~UNCLASSIFIED ____

StCU1NTV CLASS. Vg(A? ON t)f 1141I PAOS (Woa Dad ol e ) _______

RUA tNATWU(FtONSREPORT DOCUMENTATION PAGE 1lt~.i (I1p.I.:'ltN~.~

[I.9-19 ACCEISSION NO. 0 1CIP1 NCAIALIO NUMOI A

Solving Staircase Linear Proqrams By Technicaleat
(7 The Simplex Methods 2# PricingS, 7mrylm OR REOR wgwwnwi. t "~ sUm

SOL_79- 19
7. AU14001(s) MTP~IA TOI GUtNT NUUUEN(.I

J ~ Roet 1Fourer j--NP14-75-C-0?67.

6 IsCRP0 MING OROANIZA514, NAME ANO AOONIIISE S~v~ w
Operations Research Department - SOL AP7 = NTNM101

Stanford University NR-047-143
Stanford, CA 94305 ____

11 CONTROLLING. OFFICI NAME AND AnORKIISI

Operations Research Program - ONR " -,Novg 9
Department of the Navy or-- p~wa

800 N.,QJic StreetL Arlington, VA 222?17 66
-T-OI t.:Aa N( C NVAMC A AOOM(ESS(II diftent from confeefitnE Otelve) -7 iSc UfitTy CL ASS 4.1 this to.,hUNCLASSIVILD & ik

ASS. iPiiiCAT ONY1;WNAOIN.

Is 612TRIPUTION STATEMENT fat this Mo$)

This document has been approved for public release Aind sale;
its distribution is unlimited.

77 -ISTMIAUY ION ST ATVMyNT (t.' *bette..r$ entered In Mlaeh 20, It dferen ftom Nop.ott

It. %UPPrMVNTAV NOTES

It K rV WOMOS (Con.Iins,. .w rot'e ae it *n...aminp mod Ide~t Aw block nhmber)

LARGE-SCALE LINEAR PROGRAMMING
STAIRCASE LINEAR PROGRAMS
SIMPLEX METHOD

III ASSTPAC T (Comtftue on r00o-*dWisI nooooo~y and Identify by Weeck OW10164M)

SEE ATTACHED

C/O Va1413 I S ,Si UNCLASSIFIED
*SCURiYY CLASSPICATION 00 THIS PAGE (101118 RFo. W.OM9



.,UNCLASSIFILL

02COm,', CLASSIICATION O' THIS PAS Milian 9. 0*.

7-19, Robert Fourer
Solving Staircase Linear Programs by Simplex Method, 2: Pricing

lhis and a c~wopanion paper share one goal : to solve staircase-

structured linear programs faster through adaptation of the algorithms

of the modern simplex method. Their means are quite different

however: whereas the preceding paper concentrated on "inversion"

algorithms that factorize the basis and solve linear systems, the

present paper looks are "pric inq" algqorithms that select a variable

to enter the basis at each iteration.

Pricing Involves two sets of algorithms: computation algorithms that

determine reduced costs of the nonbasic variables, and selection

algorithms that choose among variables whose reduced costs are

favorable. This paper develops staircase adaptations of both sorts

of algorithms, and reports extensive (although preliminaryl

conputational experience. Staircase computation algorithmis appear

to offer modest but consistent savings; staircase selection algo-

rithms, properly chosen, may offer substantial ;avings in number

of iterations, time pet, iteration, or sometimes both.

, -,UNCLASS If I 10

smal ,,,A"C" OF,= "01 PAM ..... 60


